MMath-I, Linear Algebra Final (Back paper)

Instructions: Total time 3 Hours. All questions carry equal weightage.

1. Give an example of a matrix $A=\left(a_{i j}\right)$ of size 5×5 with complex entries such that $A^{2}=0$ and all entries of A are nonzero.
2. (i) Let k be a field. Let $V=k^{n}$ with elements written as row vectors and $W=k^{m}$ with elements written as column vectors. Prove that $V \otimes_{k} W$ is isomorphic to $\mathcal{M}_{m \times n}(k)$, the space of matrices of size $m \times n$ with entries in k, via an isomorphism that maps $v \otimes w$ to $w v$, the matrix product of the $m \times 1$ matrix w with the $1 \times n$ matrix v.
(ii) Use (i) to prove there is a k-algebra isomorphism $M_{m}(k) \otimes_{k} M_{n}(k) \rightarrow$ $M_{m n}(k)$.
3. Let $A \in M_{r}(k)$ and let $\lambda_{1}, \cdots, \lambda_{r}$ be the eigenvalues of A and $B \in M_{s}(k)$ with μ_{1}, \cdots, μ_{s} the eigenvalues of B. Prove that the elements $\lambda_{i} \mu_{j}, 1 \leq$ $i \leq r, 1 \leq j \leq s$ are the eigenvalues of $A \otimes B$.
4. Let k be a field and $M_{r}(k)$ be the matrix algebra. Let $A \in M_{m}(k)$ and $B \in M_{n}(k)$ be both nilpotent matrices. Prove that $A \otimes B \in M_{m n}(k)$ is nilpotent, here we identify $M_{m}(k) \otimes_{k} M_{n}(k)$ with $M_{m n}(k)$ via the isomorphism indicated in Problem 2-(ii).
5. Let k be a field. Let $A \in M_{m}(k)$ and $B \in M_{n}(k)$ have $\operatorname{det}(A)=a$ and $\operatorname{det}(B)=b$. Compute $\operatorname{det}(A \otimes B)$.
