MMath-I, Linear Algebra Final (Back paper)

Instructions: Total time 3 Hours. All questions carry equal weightage.

- 1. Give an example of a matrix $A = (a_{ij})$ of size 5×5 with complex entries such that $A^2 = 0$ and all entries of A are nonzero.
- 2. (i) Let k be a field. Let V = kⁿ with elements written as row vectors and W = k^m with elements written as column vectors. Prove that V ⊗_k W is isomorphic to M_{m×n}(k), the space of matrices of size m×n with entries in k, via an isomorphism that maps v ⊗ w to wv, the matrix product of the m×1 matrix w with the 1×n matrix v.
 (ii) Use (i) to prove there is a k-algebra isomorphism M_m(k)⊗_k M_n(k) → M_{mn}(k).
- 3. Let $A \in M_r(k)$ and let $\lambda_1, \dots, \lambda_r$ be the eigenvalues of A and $B \in M_s(k)$ with μ_1, \dots, μ_s the eigenvalues of B. Prove that the elements $\lambda_i \mu_j$, $1 \le i \le r$, $1 \le j \le s$ are the eigenvalues of $A \otimes B$.
- 4. Let k be a field and $M_r(k)$ be the matrix algebra. Let $A \in M_m(k)$ and $B \in M_n(k)$ be both nilpotent matrices. Prove that $A \otimes B \in M_{mn}(k)$ is nilpotent, here we identify $M_m(k) \otimes_k M_n(k)$ with $M_{mn}(k)$ via the isomorphism indicated in Problem 2-(ii).
- 5. Let k be a field. Let $A \in M_m(k)$ and $B \in M_n(k)$ have det(A) = a and det(B) = b. Compute $det(A \otimes B)$.